Step of Proof: primrec_add
11,40
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
primrec
add
:
1.
T
: Type
2.
n
:
3. 0 <
n
4.
m
:
,
b
:
T
,
c
:({0..((
n
- 1)+
m
)
}
T
T
).
4.
primrec((
n
- 1)+
m
;
b
;
c
) = primrec(
n
- 1;primrec(
m
;
b
;
c
);
i
,
t
.
c
(
i
+
m
,
t
))
5.
m
:
6.
b
:
T
7.
c
: {0..(
n
+
m
)
}
T
T
8. primrec((
n
- 1)+
m
;
b
;
c
) = primrec(
n
- 1;primrec(
m
;
b
;
c
);
i
,
t
.
c
(
i
+
m
,
t
))
primrec(
n
+
m
;
b
;
c
) = primrec(
n
;primrec(
m
;
b
;
c
);
i
,
t
.
c
(
i
+
m
,
t
))
latex
by ((((((MoveToConcl (-1))
CollapseTHEN (GenConcl primrec(
m
;
b
;
c
) =
b'
))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 2:n),(first_nat 3:n)) (first_tok SupInf:t) inil_term)))
)
C(
CollapseTHEN (Try ((ExtWith [`z'] [{0..(
n
+
m
)
}
T
T
])
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 2:n),(first_nat 3:n)) (first_tok SupInf:t) inil_term)))
))
latex
C
1
:
C1:
8.
b'
:
T
C1:
9. primrec(
m
;
b
;
c
) =
b'
C1:
10. primrec((
n
- 1)+
m
;
b
;
c
) = primrec(
n
- 1;
b'
;
i
,
t
.
c
(
i
+
m
,
t
))
C1:
primrec(
n
+
m
;
b
;
c
) = primrec(
n
;
b'
;
i
,
t
.
c
(
i
+
m
,
t
))
C
.
Definitions
P
&
Q
,
suptype(
S
;
T
)
,
S
T
,
,
i
j
<
k
,
t
T
,
P
Q
,
{
i
..
j
}
,
x
:
A
.
B
(
x
)
,
False
,
A
,
A
B
,
Lemmas
le
wf
,
int
seg
wf
,
primrec
wf
origin